Small, Medium, and Big Data: Application of Machine Learning Methods to the Solution of Real-World Imaging and Printing Problems

A Personal Journey

Jan Allebach Electronic Imaging Systems Laboratory (EISL) Purdue University 1 May 2018

What are the Essential Ingredients of Machine Learning? (1/2)

- A well-defined task
 - Choose a decision from a finite set of outcomes, based on observed data.
 - Estimate or predict the value of a continuous variable, based on observed data.
- A well-defined decision or estimation structure
 - Clustering
 - Decision tree
 - Linear regression
 - Support vector machine
 - Neural network, including convolutional neural network (CNN)
 - Or other

What are the Essential Ingredients of Machine Learning? (2/2)

- Features
 - Computed from observed data.
 - Serve as input to the decision or estimation structure.
 - May be handcrafted or determined autonomously as part of the training process.
- Training data
 - Representative of the observed data.
 - Sufficiently diverse or rich to avoid over-fitting.
- A well-defined cost function to penalize errors in classification or estimation.
- A procedure for training the free parameters of the decision or estimation structure to minimize the cost function.

Synopsis

- K Nearest Neighbor classification applied to printer forensics
- Extension of K Means to Scalar Sequential Quantization
- Optimal tree-structured piece-wise linear filter for image scaling
- Training-based methods for digital haftoning
- Black-box model for print prediction based on training and linear regression
- Print macrouniformity prediction (Method 1)
- Print macrouniformity prediction (Method 2)
- Fashion photograph aesthetic quality predictor based on SVM and CNN
- Facial landmark detection using CNN
- Logo identification using CNN
- Text field category classification via natural language processing

Printer Forensics

Whodunnit?

UNIVERSITY

Supervised Clustering K Nearest Neighbors (KNN)

"Intrinsic Signatures of Inkjet Devices," invited presentation, Center for Counterfeit Analysis Symposium (CAC-18), European Central Bank, Frankfurt Am Main, Germany, 6-7 March 2018.

Example image analysis for HP Envy 5549 Y and G clusters

Unsupervised Clustering K-means

A special case of K-means: Structured Vector Quantization*

Fig. 1. (a) Two-dimensional example and (b) encoder-decoder operation in independent scalar quantization.

R. Balasubramanian, C. A. Bouman, and J. P. Allebach, "Sequential Scalar Quantization of Vectors: An Analysis," *IEEE Trans. on Image Processing*, Vol. 4, pp. 1282-1295, September 1995.

SCV IEEE SPS Chapter – 1 May 2018

Fig. 2. (a) Two-dimensional example and (b) encoder-decoder operation in sequential scalar quantization.

J. Z. Chang, J. P. Allebach, and C. A. Bouman, "Sequential Linear Interpolation of Multidimensional Functions," *IEEE Trans. on Image Processing*, Vol. 6, pp. 1231-1245, September 1997.

Tree-Structured Classifiers: Resolution Synthesis – An Optimal Piecewise Linear Interpolator*

C. B. Atkins, C. A. Bouman, and J. P. Allebach, "Tree-Based Resolution Synthesis," *Proceedings of PICS-99: the 1999 IS&T Image Processing, Image Quality, Image Capture Systems Conference*, Savannah, GA, 25-28 April 1999. C. B. Atkins, C. A. Bouman, and J. P. Allebach, "Optimal Image Scaling Using Pixel Classification," *Proceedings of the 2001 International Conference on Image Processing*, Thessaloniki, Greece, 7 October – 10 October 2001.

B. Zhang, J. P. Allebach, J. Gondek, and M. Schramm, "Improved Resolution Synthesis Algorithm for Image Interpolation," *Proceedings of NIP22 22nd International Conference on Digital Printing Technologies*, Denver, CO, 17-22 September 2006.

*Research supported by HP, Inc.

Optimal image scaling

Scaling procedure

4X scaling results

Photoshop Bicubic Interpolation

Tree-Based Resolution Synthesis

- K Nearest Neighbor classification applied to printer forensics
- Extension of K Means to Scalar Sequential Quantization
- Optimal tree-structured piece-wise linear filter for image scaling
- Training-based methods for digital haftoning
- Black-box model for print prediction based on training and linear regression
- Print macrouniformity prediction (Method 1)
- Print macrouniformity prediction (Method 2)
- Fashion photograph aesthetic quality predictor based on SVM and CNN
- Facial landmark detection using CNN
- Logo identification using CNN
- Text field category classification via natural language processing

Training-based development of optimal rendering algorithms

Model-Based Halftoning: Direct Binary Search (DBS)*

Analoui and J. P. Allebach, "Model-based Halftoning by Direct Binary Search," *Proceedings of the 1992 SPIE/IS&T Symposium on Electronic Imaging Science and Technology*, San Jose, CA, February 9-14, 1992, Vol. 1666, pp. 96-108.

SCV IEEE SPS Chapter – 1 May 2018

D. J. Lieberman, and J. P. Allebach, "A Dual Interpretation for Direct Binary Search and its Implications for Tone Reproduction and Texture Quality," *IEEE Trans. on Image Processing*, Vol. 9, pp. 1950-1963, November 2000.

The DBS search heuristic

DBS convergence: 0, 1, 2, 4, 6, and 8 iterations

Model-Based Training Supervised Halftoning Tone-Dependent Error Diffusion (TDED)*

P. Li and J. P. Allebach, "Tone-Dependent Error Diffusion," *IEEE Trans. on Image Processing*, Vol. 13, pp. 201-215, February 2004.

SCV IEEE SPS Chapter – 1 May 2018

*Research supported by HP, Inc.

Optimization of TDED parameters

Optimal weights and thresholds

Floyd-Steinberg vs TDED

TDED vs DBS

TDED

Marking engine technologies: laser electrophotographic

Architecture of laser electrophotographic printer

Instability of electrophotographic process

0

1

0

1

1

0

Maximum Variance Pattern

Avg. = 0.58, Std. Dev. = 0.480

0

1

Avg. = 0.76, Std. Dev. = 0.089

Student: F. Baqai

SCV IEEE SPS Chapter – 1 May 2018

Typical low-end laser electrophotographic printer: HP LaserJet M252dw \$249.99 List

Commercial/industrial scale electrophotographic printing

HP Indigo Press 3050 2,000 4-color sheets/hr.

HP Indigo Press 30000 4600 3-color sheets/hr.

Linear Regression Predicting Printed Absorptance From a Digital Halftone: the Black-Box Model*

Y. Ju, T. Kashti, T. Frank, D. Kella, D. Shaked, M. Fischer, R. Ulichney, and J. P. Allebach, "Black-Box Models for Laser Electrophotographic Printers – Recent Progress," *Proceedings NIP29: IS&T's 29th International Conference on Digital Printing Technologies*, Seattle, WA, 29 September – 3 October 2013

SCV IEEE SPS Chapter – 1 May 2018

*Research supported by HP, Inc.

Structure of the Black-Box Model

Predict the central pixel absorptance

How Do We Train the Model?

Scanned Image Analysis

Experimental Results – Sample Images

Scanned image

ULM5x5 prediction

M45x45 c2a prediction

M45x45 c3b prediction

Digital

M45x45 c3b error image

Gray level 96/255

*All error images are scaled identically with white denoting low error and black denoting high error.

*Absorptance units are on a scale of 0 (white) to 1 (black)

- K Nearest Neighbor classification applied to printer forensics
- Extension of K Means to Scalar Sequential Quantization
- Optimal tree-structured piece-wise linear filter for image scaling
- Training-based methods for digital haftoning
- Black-box model for print prediction based on training and linear regression
- Print macrouniformity prediction (Method 1)
- Print macrouniformity prediction (Method 2)
- Fashion photograph aesthetic quality predictor based on SVM and CNN
- Facial landmark detection using CNN
- Logo identification using CNN
- Text field category classification via natural language processing

Linear Regression and Support Vector Machine Assessment of Large Area Nonuniformity by Image Quality Ruler Method*

W. Wang, G. Overall, T. Riggs, R. Silveston-Keith, J. Whitney, G. T. C. Chiu, and J. P. Allebach, "Figure of Merit for Macrouniformity Based on Image Quality Ruler Evaluation and Machine Learning Framework," *Image Quality and System Performance X*, SPIE Vol. 8653, P. D. Burns and S. Triantaphillidou, Eds. San Francisco, CA, 3-7 February 2013.

Research supported by Lexmark

Results from Image Quality Ruler Experiment for Assessment of Macro-Uniformity

Mean of Print Scores Purdue (12 subjects) vs. Lexmark (20 subjects)

Prediction of Scores Assigned by Human Observers: Macro-Uniformity Features

- Graininess: 2-dimensional, grainy texture.
- Mottle: 2-dimensional, random lightness variations.
- Large area variation: 2-dimensional, random lightness variations, spatial region is larger than mottle.
- Jitter (horizontal and vertical): 1-dimensional, isolated lightness variations.
- Large-scale non-uniformity (horizontal and vertical): 1dimensional, periodic lightness variations.
- The algorithms that we used are largely inspired by ISO image quality standards.*

^{*}Document B123: NP 13660 office equipment measurement of image quality attributes for hardcopy output: Binary monochrome text and graphic images, ISO/IEC.
Prediction of Macro-Uniformity Scores by Linear Regression

- Predicted Rating = $\theta_0 + \theta_1 \times f_1 + \theta_2 \times f_2 + \dots$
- Training error
 - » Mean absolute error is 0.80, standard deviation of error is 0.64
- Testing error
 - » Mean absolute error is 0.98, standard deviation of error is 0.83

Accuracy of Macro-Uniformity Predictor as a Function of Print Sample

Human Scores vs. Linear Regression Scores

Accuracy of Macro-Uniformity Predictor in Terms of Scatter Plot

The correlation between Linear Regression Predicted Scores and Subjects' Scores is 0.90

Support Vector Machine Assessment of Local Nonuniformity*

M. Q. Nguyen, S. Astling, R. Jessome, E. Maggard, T. Nelson, M. Q. Shaw, and J. P. Allebach, "Perceptual Metrics and Visualization Tools for Evaluation of Page Uniformity," *Image Quality and System Performance XI*, SPIE Vol. 9016, S. Triantaphillidou and M.-C. Larabi, Eds. San Francisco, CA, 3-5 February 2014. SCV IEEE SPS Chapter – 1 May 2018 M. Q. Nguyen and J. P. Allebach, "Controlling Misses and False Alarms in a Machine Learning Framework," *Image Quality and System Performance XII*, SPIE Vol. 9396, M.-C. Larabi and S. Triantaphillidou, Eds. San Francisco, CA, 8-12 February 2015.

*Research supported by HP, Inc.

Prediction of Non-Uniformity Grades Assigned by an Expert Human Observer: Data Set and Features

Rank A	24	good	pass
Rank B	136	fairly good	pass
Rank C	66	bad	fail
Rank D	25	very bad	fail

Each test page includes 40 statistics from 8 features (histogram, min, max, mean, stddev)

Use of Support Vector Machine (SVM) to Predict Non-Uniformity Grades Assigned by Expert Observer

Ο

0.4

0.5

0.6

Average(DDL-IntraBF)

0.7

0.8

0.9

Perform 5-fold cross validation.

Performance of SVM in Predicting Non-Uniformity Grades Assigned by Expert Observer

Table 1. SVM prediction results for 3 types of test pages

(a) Cyan with 83.3% correct classification.

Cyan	SVM-based		ed
(90 test pages)	prediction		n
		Pass	Fail
Visual grade	Pass	49	4
	Fail	11	26

(b) Magenta with 85.2% correct classification.

Magenta	SVM-based		
(88 test pages)	prediction		
		Pass	Fail
Visual grade	Pass	49	7
	Fail	6	26

(c) Red with 90.4% correct classification.

Red	SVM-based		ed
(73 test pages)	prediction		
		Pass	Fail
Visual grade	Pass	45	6
	Fail	1	21

Refinement of Feature Set by Forward Search

Controlling False Alarms vs. Misses

SCV IEEE SPS Chapte

- K Nearest Neighbor classification applied to printer forensics
- Extension of K Means to Scalar Sequential Quantization
- Optimal tree-structured piece-wise linear filter for image scaling
- Training-based methods for digital haftoning
- Black-box model for print prediction based on training and linear regression
- Print macrouniformity prediction (Method 1)
- Print macrouniformity prediction (Method 2)
- Fashion photograph aesthetic quality predictor based on SVM and CNN
- Facial landmark detection using CNN
- Logo identification using CNN
- Text field category classification via natural language processing

Support Vector Machine and Convolutional Neural Network

Fashion Photograph Aesthetic Quality Predictor*

- Goal is to develop a method to automatically generate aesthetic quality scores for photos.
 - » Focus on customer-uploaded fashion item photos on customer-to-customer (C2C) fashion shopping website. Mostly taken by amateur photographers.
 - » When customers upload item photos, we can give them feedback on the aesthetic quality. If the quality is not satisfactory, we may suggest customers retaking photos.
 - » Our sponsor can use the predictor to decide which closet is highlighted.

M. Chen and J. P. Allebach, "Aesthetic Quality Inference for Online Fashion Shopping," *Imaging and Multimedia Analytics in a Web and Mobile World 2014*, SPIE Vol. 9027, Q. Lin, J. P. Allebach, and Z. Fan, Eds. San Francisco, CA, 3-4 February 2014.

J. Wang, "Three Problems in Image Analysis and Rendering: Aesthetic Evaluation of Fashion Photos, Local Defect Detection, and Semantically-Based 2.5D Printing," Ph.D. Dissertation, Purdue University, West Lafayette, IN, May 2016.

yette, IN, May 2016. by Poshmark, Inc.

Framework for aesthetic quality prediction

Ground Truth Collection

- We collected a dataset of 734 photos from our sponsor (www.poshmark.com).
 - » We built a GUI, and asked experiment participants to input the aesthetic quality score for each photo.
 - » The rating is based on a 1 to 10-point scale, where 1 denotes worst quality and 10 denotes best quality.

0.0	Poshmark PE
	Please rate the image on a 1 to 10 scale (10 highest)
Poshmark Photo Quality Psychophysics Experiment	
Charge to Observers	Annum
Welcome to the psychophysical experiment for online fashion shopping photo quality assessment.	EUNIMAN
In this experiment, you will assess certain number of online fashion photos. After assessing each photo, please assign a score of the overall photo quality. The quality score ranges from 1 to 10. Score 10 is the perfect photo quality and Lie the perfect photo quality. You can erece "Kvit" at anytime during the	
experiment to quit. You will be able to resume your session later.	
Please note, you are asked to assess the photo quality of the photos, not the quality of the product shown in the photo. Photo quality can be influenced by multiple factors including lightness, colorfulness, sharpness and so on. However, the quality of products, such as the style and condition (old or new), should not be considered as factors of photo quality.	
Thanks very much for your participation!	
	9/200
Start Exit	Score: §

Example Feature: Colorfulness – Highest and Lowest 3 from Training and Testing Database

144.1

96.8

96.1

22.6

Example Feature: Contrast Metric

• The span of the histogram that contains the central 98% of gray levels of the image.

Example Feature: Saliency

Original Image

Saliency Map

Original Image

Saliency Map

Original Image

Saliency Map

Example Feature: Modified Rule of Thirds

Ground Truth and Predicted Aesthetic Scores Examples of High and Low Quality Photos

Predicted Score: 7.9 Ground Truth Score: 8.6

Predicted Score: 7.6 Ground Truth Score: 8.8

Predicted Score: 9.6 Ground Truth Score: 9

Predicted Score: 4.1 Ground Truth Score: 5.2

Predicted Score: 2.6 Ground Truth Score: 4.1

Predicted Score: 2.1 Ground Truth Score: 4.8

Optimal Training Feature Subset Selection

- Using a subset of all designed features in predictor training may yield better result.
 - » Mainly because overfitting is alleviated.
- Adopt wrapper feature selection methodology*.
 - » Evaluate a feature subset by assessing the cross-validation accuracy of the SVR predictor trained with this feature subset.
 - » In the end, we choose the feature subset that yields highest cross-validation accuracy.

*Isabelle Guyon and André Elisseeff, "An introduction to variable and feature selection," *The Journal of Machine Learning Research*, vol. 3, pp. 1157–1182, 2003.

Wrapper Feature Selection Procedure and Result

- Exhaustively searching over all possible feature subsets is computationally intractable.
 - » In our case 2²⁶ passes would be needed.
 - » We adopt the *best-first* algorithm as our search strategy*.
- Feature subset with the 9 selected features shown in the table can train a most accurate predictor.
 - » However, if we are able to collect more training data, more features should be included since larger training dataset can support a model with higher complexity.

Feature ID	Feature Name	Selected in 734-photo dataset
1	'Lightness'	x
2	'Colorfulness'	
3	'Contrast'	
4	'Average Saturation'	
5	'Average Hue'	
6	'Hue Count'	
7	'Color Harmony'	
8	'Number Of Salient Regions'	
9	'Aggregate Area Size Of All Salient Regions'	
10	'Subject-Background Lightness Difference'	
11	'Subject-Background Hue Difference'	
12	'Subject-Background Saturation Difference'	Х
13	'Modified Rule Of Thirds'	X
14	'Wavelet Level 1 Sum Of Power'	
15	'Wavelet Level 2 Sum Of Power'	
16	'Wavelet Level 3 Sum Of Power'	
17	'Laplacian Level 1 Sum Of Power'	X
18	'Laplacian Level 2 Sum Of Power'	X
19	'Laplacian Level 3 Sum Of Power'	X
20	'CPBD Sharpness Metric'	X
21	'Wavelet Center Detail Strength Ratio'	
22	'Laplacian Center Detail Strength Ratio'	X
23	'Wavelet Edge Energy Bounding Box'	
24	'Laplacian Edge Energy Bounding Box'	
25	'Wavelet Sum Of Weighted Distance'	
26	'Laplacian Sum Of Weighted Distance'	x

*Mark A Hall, Correlation-based Feature Selection for Machine Learning, Ph.D. thesis, The University of Waikato, 1999.

Predictor Training and Accuracy Analysis

- Database consists of 734 fashion shopping photos.
 - » Ground truth collected from psychophysical experiment.
- Trained a support vector regression predictor.
- Prediction accuracy analysis
 - » We conducted 10 repetitions (with different random partitions) of 10-fold cross-validation and calculated the average root mean squared error (RMSE) between the predicted aesthetic score and the ground truth.
 - » Using all the features, our regression predictor achieves an RMSE of 1.60 (score ranging from 1 to 10).
 - » With the optimal feature subset selected with wrapper feature selection, we further get an RMSE of 1.54.

Prediction Difference Histogram

- 49.32% of the examples have absolute differences between ground truth and predicted score smaller than 1.
- 79.97% of the examples have absolute differences smaller than 2.

Aesthetic Quality Prediction Based on a Convolutional Neural Network

- Our network is very similar to the successful AlexNet.
 - » AlexNet is an 8-layer CNN trained with 1.2 million high-resolution images belonging to 1000 different classes and tested with 150,000 testing images.
 - AlexNet reduced the recognition error rate by 40% compared with the previous best result.
 - » In order to make real-number regression, we replace the last layer's 1000-class softmax classifier with a 1-node neuron.
 - » We initialize our net's parameters with the AlexNet parameters.
 - Its parameters have been well trained to extract image structured features.

Data Augmentation

- Make more training data from our 734 training photos to combat overfitting.
- Steps:
 - » Rescale all photos to 256 × 256.
 - Take 5 patches from each photo.
 These patches have dimension 227 × 227 and are located at the 4 corners and the center of the image.
 - » Each patch is flipped about the vertical axis.
- Each photo produces 10 training patches.

Positions of upper-left, center, lower-right patches

Prediction Accuracy

- We conduct a 5-fold cross-validation to test the prediction accuracy.
- In each fold, we train the net for 100000 iterations.
 - » In each iteration, a batch of the training data is fed into the net and the net parameters are updated by stochastic gradient descent.
 - » Every 200 iterations, we test the accuracy on the testing data set.
 - » The accuracy (or loss since it is the objective of optimization) is calculated as the root mean square error (RMSE) between the ground truth score and the predicted score.
- To verify the importance of initializing our net with AlexNet, we also train a net initialized with random numbers and record the accuracy.

Comparison with SVM Predictor

• RMSE: SVM 1.542, Deep Neural Network 1.530.

» Two predictors yield very similar prediction accuracy.

• Which one to use?

- » It depends.
- » The deep neural network predictor saves the labor of designing, analyzing, and selecting image features, which is suitable for fast development.
- » However, the deep neural network model is expensive in storage and computation.
 - Trained deep neural work model needs more than 200 megabytes (MB) storage.
 - In some applications on the mobile platform, the storage and computation could be a bottleneck.

Facial Landmark Detection Using a CNN Input image System Overview*

Final output

S

Experimental Results

Example landmark predictions using proposed method

Performance Evaluation

Method	68 Point RMSE
SDM (2013)	5.57
CFAN (2014)	5.50
LBF (2014)	4.95
CFSS (2015)	4.73
TCDCN (2014)	4.80
Fan et al. (2016)	4.76
Honari et al. (2016)	4.67
Lai et al. (2016)	4.07
Chen et al. (2017)	3.73
Ours	3.53

Comparison of state-of-the-art real time approaches on 300W common test dataset

R. Mao, Q. Lin, and J. Allebach, "CNN Based Facial Landmark Detection," *Imaging and Multimedia Analytics in a Web and Mobile World 2018*, (Part of IS&T Electronic Imaging 2018), J. Allebach, Z. Fan, and Q. Lin, Eds., San Francisco, CA, 28 January -2 February 2018.

- K Nearest Neighbor classification applied to printer forensics
- Extension of K Means to Scalar Sequential Quantization
- Optimal tree-structured piece-wise linear filter for image scaling
- Training-based methods for digital haftoning
- Black-box model for print prediction based on training and linear regression
- Print macrouniformity prediction (Method 1)
- Print macrouniformity prediction (Method 2)
- Fashion photograph aesthetic quality predictor based on SVM and CNN
- Facial landmark detection using CNN
- Logo identification using CNN
- Text field category classification via natural language processing

Scalable Logo Detection and Recognition with Minimal Labeling

Daniel Mas Montserrat¹, Qian Lin², Jan Allebach¹, and Edward J. Delp¹

¹Purdue University, West Lafayette, IN

D. Mas, Q. Lin, J. Allebach, and E. Delp, "Scalable Logo Detection and Recognition with Minimal Labeling," *Proceedings of the IEEE 1st International Conference on Multimedia Information Processing and Retrieval*, Miami, FL, 10-12 April 2018.

MIPR 2018

²HP Inc, Palo Alto, CA

*Research supported by HP, Inc.

April 10, 2018

SynthLogo

- We generate a dataset composed by 280,000 synthetic images including 604 different logos
- The 604 logos include well-known brands and products from food, tech, clothing and transportation companies
- Images are automatically generated

Two-Stage Approach: R-CNN

- Faster R-CNN is used as a region proposal
- DenseNet is used as a classifier

Experimental Results

Mathad	Training Dataget	Number of Classes (Training)	
Method	Training Dataset	32 Logos	604 Logos
Faster R-CNN	SynthLogo	-	47.66%
Faster R-CNN + <u>DenseNet</u>	SynthLogo	74.85%	73.96%
Faster R-CNN + DenseNet	Bootstrap	77.54%	75.12%
Faster R-CNN + <u>DenseNet</u>	SynthLogo + Bootstrap	80.12%	76.89%

Table1. mAP when using different raining data

MIPR 2018

•FlickrLogos-32 is used as testing dataset. It contains 32 different logos

Bootstrap images provide a higher mean average precision

•The <u>mAP</u> decreases when detecting a larger number of logos

April 10, 2018

Application of Natural Language Processing to an Online Fashion Marketplace

Online Fashion Marketplace

- Places to sell and purchase fashion products
- Users are both sellers and buyers
- Users sell items by taking pictures and filling in information on item
- Site has categories, with subcategories within each category
- 15 categories (16 including 'Other')
- Categories range from having 17 subcategories (Ex: Shoes) to 4 subcategories (Ex: Swim)

K. Norman, Z. Li, G. Gowala, S. Sundaram, and J. Allebach, "Application of Natural Language Processing to an Online Fashion Marketplace," *Imaging and Multimedia Analytics in a Web and Mobile World 2018*, (Part of IS&T Electronic Imaging 2018), J. Allebach, Z. Fan, and Q. Lin, Eds., San Francisco, CA, 28 January -2 February 2018. 5/1/18

- Surrounds the categories
- On either side of subcategories
- Points to currently selected category

POSHMARK

Electronic Imaging, San Francisco, 2018

*Research supported by Poshmark, Inc.

Classification Results

Thank you for your interest!

SCV IEEE SPS Chapter – 1 May 2018

